34 research outputs found

    Experimental Evaluation of Book Drawing Algorithms

    Full text link
    A kk-page book drawing of a graph G=(V,E)G=(V,E) consists of a linear ordering of its vertices along a spine and an assignment of each edge to one of the kk pages, which are half-planes bounded by the spine. In a book drawing, two edges cross if and only if they are assigned to the same page and their vertices alternate along the spine. Crossing minimization in a kk-page book drawing is NP-hard, yet book drawings have multiple applications in visualization and beyond. Therefore several heuristic book drawing algorithms exist, but there is no broader comparative study on their relative performance. In this paper, we propose a comprehensive benchmark set of challenging graph classes for book drawing algorithms and provide an extensive experimental study of the performance of existing book drawing algorithms.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Tree Drawings with Columns

    Full text link
    Our goal is to visualize an additional data dimension of a tree with multifaceted data through superimposition on vertical strips, which we call columns. Specifically, we extend upward drawings of unordered rooted trees where vertices have assigned heights by mapping each vertex to a column. Under an orthogonal drawing style and with every subtree within a column drawn planar, we consider different natural variants concerning the arrangement of subtrees within a column. We show that minimizing the number of crossings in such a drawing can be achieved in fixed-parameter tractable (FPT) time in the maximum vertex degree Δ\Delta for the most restrictive variant, while becoming NP-hard (even to approximate) already for a slightly relaxed variant. However, we provide an FPT algorithm in the number of crossings plus Δ\Delta, and an FPT-approximation algorithm in Δ\Delta via a reduction to feedback arc set.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Upward planar drawings with two slopes

    Get PDF
    In an upward planar 2-slope drawing of a digraph, edges are drawn as straight-line segments in the upward direction without crossings using only two different slopes. We investigate whether a given upward planar digraph admits such a drawing and, if so, how to construct it. For the fixed embedding scenario, we give a simple characterisation and a linear-time construction by adopting algorithms from orthogonal drawings. For the variable embedding scenario, we describe a linear-time algorithm for single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs. For the latter two classes, we make use of SPQR-trees and the notion of upward spirality. As an application of this drawing style, we show how to draw an upward planar phylogenetic network with two slopes such that all leaves lie on a horizontal line

    Rearrangement operations on unrooted phylogenetic networks

    Get PDF
    Rearrangement operations transform a phylogenetic tree into another one and hence induce a metric on the space of phylogenetic trees. Popular operations for unrooted phylogenetic trees are NNI (nearest neighbour interchange), SPR (subtree prune and regraft), and TBR (tree bisection and reconnection). Recently, these operations have been extended to unrooted phylogenetic networks, which are generalisations of phylogenetic trees that can model reticulated evolutionary relationships. Here, we study global and local properties of spaces of phylogenetic networks under these three operations. In particular, we prove connectedness and asymptotic bounds on the diameters of spaces of different classes of phylogenetic networks, including tree-based and level-k networks. We also examine the behaviour of shortest TBR-sequence between two phylogenetic networks in a class, and whether the TBR-distance changes if intermediate networks from other classes are allowed: for example, the space of phylogenetic trees is an isometric subgraph of the space of phylogenetic networks under TBR. Lastly, we show that computing the TBR-distance and the PR-distance of two phylogenetic networks is NP-hard

    Outside-Obstacle Representations with All Vertices on the Outer Face

    Full text link
    An obstacle representation of a graph GG consists of a set of polygonal obstacles and a drawing of GG as a visibility graph with respect to the obstacles: vertices are mapped to points and edges to straight-line segments such that each edge avoids all obstacles whereas each non-edge intersects at least one obstacle. Obstacle representations have been investigated quite intensely over the last few years. Here we focus on outside-obstacle representations (OORs) that use only one obstacle in the outer face of the drawing. It is known that every outerplanar graph admits such a representation [Alpert, Koch, Laison; DCG 2010]. We strengthen this result by showing that every (partial) 2-tree has an OOR. We also consider restricted versions of OORs where the vertices of the graph lie on a convex polygon or a regular polygon. We characterize when the complement of a tree and when a complete graph minus a simple cycle admits a convex OOR. We construct regular OORs for all (partial) outerpaths, cactus graphs, and grids.Comment: Appears in the Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022
    corecore